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Experiment shows that the steady axisymmetric flow past a sphere becomes 
unstable in the range 120 < R e  < 300. The resulting time-dependent non-axi- 
symmetric flow gives rise to non-axisymmetric vortex shedding a t  higher Reynolds 
numbers. The present work reports a computational investigation of the linear 
stability of the steady axisymmetric base flow. We use a spectral technique to 
represent the base flow. We then perform a linear stability analysis with respect to 
axisymmetric and non-axisymmetric disturbances. A spectral technique similar to 
that employed in the base-flow calculation is used to solve the linear-disturbance 
equations in stream-function form (for axisymmetric disturbances), and in a 
modified primitive variables form (for non-axisymmetric disturbances), The analysis 
shows that the axisymmetric base flow undergoes a Hopf bifurcation a t  Re = 175.1, 
with the critical disturbance having azimuthal wavenumber m = 1 ,  and dimen- 
sionless frequency (non-dimensionalized as a Strouhal number, St) 0.0955. The 
critical Re, azimuthal mode number, and St are favourably compared to previous 
experimental work. 

1. Introduction 
At sufficiently small Reynolds numbers, flow about bluff bodies is known to be 

attached and steady. At higher Reynolds numbers, the flow becomes separated, 
unsteady, and ultimately turbulent. The nature of this transition can have important 
consequences in a number of practical applications. 

In recent years, the process by which this transition occurs has been extensively 
studied for two-dimensional bodies, both experimentally (Provansal, Mathis & Boyer 
1987) and theoretically (Monkewitz & Nguyen 1987; Monkewitz 1 9 8 8 ~ ) .  In the case 
of a circular cylinder (Thoman & Szewczyk 1969; Lin, Pepper & Lee 1976; Jackson 
1987 ; Zebib 1987), the first stage in the transition is found to be a wake instability 
of the separated steady flow, leading to a time-periodic two-dimensional flow with 
considerable concentration of bound vorticity in the near wake adjacent to the body. 
As Re is increased, this flow may in turn give rise to the shedding of fluid parcels with 
concentrated vorticity ( '  vortex shedding '), and eventually to turbulence. 

For axisymmetric bodies, the transition is less well understood, despite 
considerable experimental progress for wakes of slender (Hama & Peterson 1976 ; 
Peterson & Hama 1978; Sato & Okada 1966) and bluff (Achenbach 1974; Fuchs, 
Mercker & Michell979; Goldburg & Florsheim 1966; Jayaweera & Mason 1965; Kim 
& Durbin 1988; Masliyah 1972; Willmarth, Hawk & Harvey 1964) bodies of 
revolution. For non-spherical bodies of revolution, experiments may be plagued by 
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the need for extremely precise alignment of the body’s axis with the flow direction 
(Hama et al. 1977). 

On the theoretical side, there have been several studies of the stability of 
axisymmetric parallel velocity profiles as models of axisymmetric wakes (Batchelor 
& Gill 1962; Gold 1963; Lessen & Singh 1973; Monkewitz 1988b). Batchelor & Gill 
performed inviscid stability analyses on parallel axisymmetric velocity profiles 
appropriate to jets and wakes, and found the critical azimuthal wavenumber to be 
m = 1.  Gold extended this approach to compressible flows, and found the same 
critical value of m. Lessen & Singh extended the approach of Batchelor & Gill by 
including the viscous terms in the disturbance equations, and also found m = 1 to  be 
the critical azimuthal wavenumber. More recently, Monkewitz (1988b) has also 
considered, on a viscous basis, the linear stability of incompressible axisymmetric 
parallel wake profiles, including those appropriate to bluff bodies of revolution. His 
results provide conditions under which t)hese parallel flows are absolutely unstable 
with respect to m = 1 disturbances. 

The prototypical axisymmetric flow is that generated by a sphere in a uniform 
flow. At low Reynolds numbers, the flow is steady, axisymmetric, and remains 
attached. In the classical experiments of Taneda (1956), separation is first observed 
a t  Re x 24. (All Reynolds numbers referred to  herein are based on diameter.) As Re 
increases, the downstream extent of the recirculating wake progressively increases, 
and the separation circle on the sphere moves forward from the rear stagnation point. 
At values of Re in the range 120 < Re < 300, experiment shows that the steady 
axisymmetric flow loses its stability (henceforth referred to as the first transition, 
with corresponding Reynolds number Re,) and the motion becomes unsteady and 
non-axisymmetric. There is considerable uncertainty in the experimental value of 
Re, (Goldburg & Florsheim 1966; Moller 1938; Nakamura 1976; Roos & Willmarth 
197 1 ; Taneda 1956 ; Toulcova & Podzimek 1968 ; Zikmundova 1970). 

The experimental determination of Re, in conventional windlwater tunnel 
facilities is complicated by three factors. First, the presence of a sting or other 
support is known to have a strong influence on the stability of the sphere wake (Roos 
1968; Roos & Willmarth 1971). This leads to the hypothesis (discussed in more 
detail in $4) that Re, depends rather delicately on the details of the base flow. 
Secondly, because instability sets in as a weak, low-frequency oscillation, the 
instability may not be easily discernible. Thirdly, free-stream turbulence is known to 
have a significant influence on the Reynolds number at which vortex shedding occurs 
(Zarin 1970), and may also affect Re,. The first of these problems can be avoided by 
use of a magnetic suspension balance or some other non-interfering support (Zarin 
1970). The third can be avoided by towing the sphere through otherwise quiescent 
fluid (Moller 1938; Roos & Willmarth 1971). The first problem can be avoided and 
the third can in large part be eliminated by using freely falling or rising spheres. 
Unfortunately, this introduces a possible coupling of the rigid body motion of the 
sphere to the non-axisymmetric instability of the wake (through the no-slip 
boundary condition on the surface of the sphere). This may in turn lead to a 
reduction in Re, for freely fallinglrising spheres. For either fixed or fallinglrising 
spheres, the weakness of the oscillations a t  the onset of instability presents a 
formidable challenge to the experimental determination of Re,. 

The stability of the steady axisymmetric flow is especially important because the 
breakdown to non-axisymmetric (helical) vortex shedding a t  higher Re appears to 
occur via an intermediate stage involving non-axisymmetric wake oscillations. 
Although the recent work of Kim & Durbin (1988) has substantially clarified the 
previously muddled (Achenbach 1974; MacCready & Jex 1964 ; Moller 1938 ; 
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Preukschat 1962; Shafrir 1965; Sheth 1970; Stringham, Simons & Guy 1969; Viets 
1971; Viets & Lee 1971) nature of the vortex shedding a t  higher Re, there is still 
relatively little known about the mechanism by which the transition from non- 
axisymmetric wake oscillations to vortex shedding occurs. Obviously, a first step in 
unravelling the transition process is the determination of the Re a t  which the first 
transition occurs. 

It is the purpose of the present work to investigate computationally the first stage 
in the transition process for the geometrically simplest axisymmetric body, namely 
the sphere. In  contrast to the work of Gold (1963), Lessen & Singh (1973) and 
Monkewitz (1988b), our work uses a numerically computed base flow which is a 
converged non-parallel solution of the Navier-Stokes equations. The disturbance 
equations are exact linearizations of the three-dimensional Navier-Stokes equations, 
with full treatment of the viscous and (on a linear basis) the inertial terms. To the 
best of our knowledge, this is the first three-dimensional stability analysis of a non- 
parallel axisymmetric viscous flow. The only previous attempt to  compute Re, for a 
sphere is that of Kawaguti (1955). In  that work, a Galerkin approximation to the 
steady axisymmetric solution was used as the base flow. A Galerkin calculation 
showed that the base flow became unstable with respect to axisymmetric disturbances 
at  Re, = 51, which is a t  variance with both the range of experimentally determined 
Re,, and with the non-axisymmetric nature of the flow above Re, (Kendall 1964; 
Goldburg & Florsheim 1966; Roos & Willmarth 1971). 

The remainder of the paper is divided into four sections. In  $2, we present the 
governing equations and briefly discuss the method by which the steady 
axisymmetric solution is computed. In $3, we present the linear stability analysis 
and results for axisymmetric and non-axisymmetric disturbances. In  $4, we compare 
the computed results to previous experimental work. We conclude in $5 with a 
discussion of the results in terms of the development of flow around a sphere, and in 
the more general context of transition for axisymmetric bluff bodies. 

2. Governing equations and the axisymmetric base flow 
2.1. Governing equations 

We consider the incompressible flow of a constant property Newtonian fluid past a 
fixed rigid sphere. Far from the sphere, the flow is uniform and has a constant 
velocity U,. We non-dimensionalize the Navier-Stokes equations using the sphere 
radius R, as the characteristic length, R,/U,  as the characteristic time, puZ, as the 
characteristic pressure, and U, = lU,l as the characteristic velocity to  get 

v * u = o ,  (2.1) 

au - + ( u . V ) u  = - V p + - V u .  2 
at Re 

The flow satisfies the no-slip boundary condition 

u(1,0, $ 9  4 = 0, 

on the surface of the sphere. 

2.2. Base-flow calculation 
In order to conduct a proper analysis of the first transition for flow about a sphere, 
it is necessary to have a represenkation of the base flow which is useable in the 
stability analysis and is accurate. These two considerations have significant 
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implications for the calculation of the axisymmetric base flow, which we discuss in 
the present section. 

First, the base flow must be compatible with the method used to solve the linear 
disturbance equations in the stability analysis. Secondly, since previous experimental 
work has shown the development of instability to be sensitively dependent on the 
details of the base flow in the wake region, it is crucial that the structure of the wake 
be accurately represented by the computed base flow. 

We have chosen to solve the stability problem using spectral methods. Use of a 
spectral technique to compute the base flow offers several advantages over a finite 
difference approach (e.g. Fornberg 1988), including the elimination of interpolation 
and the numerical approximation of derivatives in the inertial terms of the linear 
disturbance equations. For reasons cliscussed separately (Kim 1989), the spectral 
method chosen to compute the steady axisymmetric flow is a modification of the 
technique used by Zebib (1984) for Re = 1, 5 and 10. The changes we have 
implemented allow the base-flow calculation to be efficiently extended to Re = 200, 
and for the convergence of the solutions to be clearly established. This method is 
entirely compatible with the stability analysis presented in $3. 

Zebib’s method employs a fourth-order stream-function formulation of the 
governing equations for steady axisymmetric flow in spherical coordinates. Briefly, 
the differences between our technique and Zebib’s are as follows. We have 
decomposed the solution into a uniform flow and a Galerkin series, in which the ith 
angular trial function is an integral of the ith Legendre polynomial and has the 
proper symmetry (stream-function vanishes on B = 0 , ~ ) .  We have also used a correct 
asymptotic implementation of the ‘soft ’ far-field conditions of Fornberg (1980) a t  
the outer boundary of the computational domain. Finally, our Galerkin integrations 
are done with weightings of the form rk sin 0. (We have used L = 1 herein ; essentially 
identical results, requiring the same number of Newton iterations to solve the 
nonlinear algebraic equation system, are obtained for k: = 0,1,2.)  

With these improvements, we are able to compute the steady axisymmetric 
solution to Reynolds numbers in excess of Re,. The convergence of the base flow over 
a wide range of Re has been established by detailed checks of various scalar 
properties, including the drag coeficient, dimensionless length of the separated flow 
region, and separation angle as both the size of the computational domain and the 
spatial resolution are increased. Details of the procedure, and a favourable 
comparison of the results to previous experimental work (Taneda 1956; Modi & 
Akutsu 1984), are discussed in detail in Kim & Pearlstein (1989). For subsequent 
reference, we denote by K and L + 1 the number of polar and radial functions, 
respectively, retained in the base-flow expansion. 

3. Linear stability analysis 

and decompose the dimensionless velocity and pressure into 
We consider infinitesimally small disturbances to the steady axisymmetric flow 

u(r, 8, $ 9  4 = Us(., 8) +u’(r, 8, $ 9  q,  
p ( r ,  8, $> t )  = ps(r, 8) +p’(r ,  0, $ 9  t), 

where the subscript s denotes a base-flow quantity and the prime denotes a 
disturbance quantity. In what follows, we shall only retain terms to  first order in the 
disturbance quantities. 
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The disturbances can be Fourier decomposed into azimuthal components according 

u'(T, 8, $, t )  = C um(r, 8, $, t )  = c u;(T, 8, t )  eim+, ( 3 . 1 ~ )  
to m m 

m--cc m--m 

m m 

and p?, 8, $, t )  = C p&, 8, $, t )  = c p;(r, 6, t )  eim+. (3.lb) 

The remainder of this section is devoted to discussions of the fates of axisymmetric 
(m = 0) and non-axisymmetric (m + 0) disturbances to  the steady axisymmetric 
base flow. For each azimuthal wavenumber, we will then seek to determine whether, 
at fixed Re, any disturbances grow in time. The critical Reynolds number for the 
axisymmetric base flow, Re,, is the Re for which no disturbances grow, and one or 
more disturbances are neutral. Unless otherwise indicated, the base-flow calculation 
was performed with K = L = 28. 

m--m m--cc 

3.1. Axisymmetric (m = 0) disturbances 
We begin by considering axisymmetric disturbances with arbitrary time dependence. 
Because the base flow and disturbance are axisymmetric, we can use a stream- 
function formulation of the Navier-Stokes equations 

+-- = 0, (3.2) 

with boundary conditions 

= 0. a w l ,  5, t )  
ar Y(195, t )  = 0, 

At large r ,  we have the asymptotic boundary condition 

lim V ( r ,  [, t )  + O .  
2-03 

I n  (3.2), we have defined { = cos8, and 

(3.3a, b )  

(3.4) 

Since the solution must be symmetric about 8 = 0 and K, we also impose the 

(3.5a, b)  conditions 

The determination of Re, is thus equivalent to computing the largest value of Re 
for which no solution of (3.2)-(3.5) grows in time. As (3.2)-(3.5) are linear and time- 
invariant, we investigate modal solutions of the form 

Y ( r ,  1, t )  = 0, Y(T, - 1, t )  = 0. 

ly'(T, g, 4 = $(., 5) evt, 
where u is the temporal eigenvalue. Thus, we consider 
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subject to the boundary conditions 

(3.7a, b)  

lim 1 c r b - Y  <) + 0, (3.8) 

(3.9a, b)  

We have solved this linear eigenvalue problem for the axisymmetric disturbances 
by a numerical technique akin to that used in the base-flow calculation, in which the 
radial coordinate is transformed to the finite domain - 1 d z < 1 according to 

r = exp ( !p(z+ 1)).  (3.10) 

Equations (3.6), (3.7) and (3.9) are straightforwardly transformed into the finite 
domain. If the far-field boundary condition (3.8) is satisfied at z = 1 (i.e. a t  finite r ) ,  
then it is of the ‘hard ’ type discussed by Fornberg (1980). The fourth-order stream- 
function formulation for the axisymmetric disturbances requires two far-field 
conditions on the function $(z, 5) = +(r ,  C), which we take to be the ‘soft’ conditions 

r+m 
and the symmetry conditions 

$(., 1) = 0, +(r ,  - 1 )  = 0. 

applied a t  z = 1. 
(3.11a, b) 

As in the calculation of the base flow, we have followed the approach of Zebib 
(1987) and expanded the highest x-derivative of $ in terms of complete sets of 
functions in the z- and <-coordinates 

(3.12) 

where the radial functions are expanded in terms of Chebyshev polynomials 

(3.13a) 

and the angular functions 
w,(<) = P,(S‘)dS‘:, (3.13b) 

individually satisfy the symmetry conditions, where P2(C) is the ith Legendre 
polynomial. 

We next truncate (3.12) and (3.13a) to I and J +  1 terms in the polar and radial 
directions, respectively, and integrate with respect to  z to  obtain expressions for $ 
and its first three z-derivatives. The constants of integration are chosen so that each 
radial function Hi(z)  satisfies all of the boundary conditions. The result is 

1; 

(3.14) 

where the coefficients G$’ are given in the Appendix. 
That the boundary and symmetry conditions are automatically satisfied by any 

linear combination of the functions in (3.12) allows further consideration to be 
restricted to the partial differential equation (3.6). Rewriting this as 

2 
gD2$+L($)--D4$ Re = 0, (3.15) 
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Re Z = J = l O  Z = 5 = 1 4  I = J =  18 
50 - 9 . 6 3 8 ~ 1 0 - ~ + 9 . 6 8 8 x l O - ~ i  -8.861 x 10-4f9.749x 10-3i - 9 . 0 6 2 ~  10-4 f9 .740~  10-3i 

130 -6.781 x 10-4f9.525x i -6.002 x 10-4f9.670x i -6.301 x 10-4+9.689x i 
160 - 5 . 3 5 5 ~ 1 0 - ~ + 9 . 5 2 4 ~  10-3i - 5 . 1 2 7 ~ 1 0 - ~ + 9 . 6 7 1 x l O - ~ i  - 5 . 3 1 1 ~ 1 0 ~ ~ f 9 . 6 9 1 ~ l O ~ ~ i  
170 -4.804 x W4&9.533 x i -4.817 x 10-4f9.675 x i -4.921 x lO-'+9.695 x lo-' i 
180 -4.139 x 10-4+9.564 x i -4.510 x 10-4+9.677 x i -4.612 x 10-4+9.698 x lo-' i 
190 -3.585 x 10-4+9.615 x i -4.175 x 10-4f9.681 x i -4.308 x 10-4+9.701 x lo-' i 

TABLE 1. Least stable temporal eigenvalue for m = 0 with r ,  = 148.4. 

we formulate a weighted residuals procedure whereby the residual of the discretized 
(3.15) is made orthogonal to the trial functions according to 

+ L ( & ) - z D 4 $  &(6)Sj(r)rksin6d6dr = 0, 'I 
for 1 < i < I  and 0 < j < J ,  where 

J+4 

&(6) = W,(C), Sj(r) = C G$' T,(z). 
9-0 

Thus, the problem is reduced to a I ( J +  1)  x I ( J +  1) matrix eigenvalue problem 

AX = UCX, (3.16) 

which is solved using standard numerical software (Garbow et al. 1977). That (3.16) 
is non-singular and has no spurious eigenvalues (Gottlieb & Orszag 1977) is 
guaranteed by satisfying the boundary and symmetry conditions (which do not 
involve u) on a term-by-term basis in (3.13a, b )  rather than by inclusion in (3.16) 
(Zebib 1987). 

Table 1 shows the least stable temporal eigenvalue of (3.16) for ( I ,  J )  = (10, lo), 
(14,14) and (18,18), computed with a = 5, corresponding to a computational domain 
consisting of a spherical annulus with radii 1 and r ,  = e@ = 148.4. Additional 
calculations show that when the base-flow and disturbance equations are solved on 
a smaller domain (r, = 90.0), the computed temporal eigenvalues (with I = J = 14) 
differ by 4.5 and 3.3 % at Re = 130 and 190, respectively. The results clearly indicate 
that for Re < 190, a11 of the eigenvalues u of the discretization are in the left half- 
plane. We therefore conclude that for Re < 190, the flow is stable with respect to 
axisymmetric disturbances. 

The stability of the flow with respect to axisymmetric disturbances at higher Re 
was not investigated because of the discovery (see $3.2) of an instability with respect 
to non-axisymmetric disturbances (with azimuthal wavenumber m = 1 )  a t  Re = 
175.1. 

3.2. Non-axisymmetric ( m  =+ 0) disturbances 
Linear analysis of the stability of non-axisymmetric disturbances (i.e. m + 0) 
proceeds from the Fourier decompositions (3.1a, b ) .  Due to the axisymmetry of the 
base flow and the linearity of the disturbance equations, the individual Fourier 
modes are uncoupled and can be investigated separately. Because the disturbance 
variables u' and p' must be real, we require that u-, = u; and p-, = p:, where * 
denotes a complex conjugate. As the case m = 0 has been treated in $3.1, attention 
will be restricted to m 3 1. 
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We have found it convenient to use the primitive variables form of (2.1), (2.2) in 
this part of the analysis. The mth Fourier component of the disturbance is then 

v * u, = 0, (3.17) governed by 

(3.18) 
2 

Re 
at+ aurn (u, * V) us+ ( us * V)U, = -Vpm +-V2um, 

with the no-slip boundary condition 

Urn( 1,8,$,  t )  = 0- (3.19) 

We then make the change of variables 5 = cos8 and eliminate the pressure and 
azimuthal velocity component as follows. We first note that au,/a$ = imu, and use 
(3.17) to eliminate urn+ from (3.17), (3.18). I n  the same manner, we can solve the 
azimuthal momentum equation for ph, and hence eliminate p,. 

As with axisymmetric disturbances, we consider modal solutions of the form 

ULr(r7 C, t )  = eat Gm,(r,  C),  (3.20 a)  

u&(r, 5, t )  = ent G,#, 0, (3.20b) 

leading to two coupled equations in r and 5 which constitute an eigenvalue problem 
for c. 

The final result is a pair of partial differential equations for the r- and 5- 
components of the velocity of the form 

a 
m2ii,, +sin2 8- (rh,)] 

ar 

(h ,  sin 8) + U,, h, + h, Use cot 8 

a sin8 a a -sine- -- 
ar [ ar ( r2$ )  +:$( sin2 8% (h, sin 8 )  

1 a 
a5 

m2Gmc-sin8-(h,sin28) 

(3.21 a )  
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sine---+-hmcot9 l + m 2  ah, 2m2 
r2 85 r2 

-~ (3.21 b)  

where i a  u,,sin8)---(r22i,,). a h , = - ( ”  a5 r ar 

Here, the velocity components must satisfy the boundary conditions 

G m r ( 1 , 5 )  = 0, Gm[(1>6)  = 0, (3.22a, b)  

on the sphere. Following Batchelor & Gill (1962), the disturbance must also satisfy 
the kinematic conditions 

d,,(T, f 1 )  = 0 (m b l),  (3.22 c) 

Glc(r, k 1)  bounded, (3.22d) 

Gmc(T,  f 1 )  = 0 (m > l),  (3.22e) 

on the coordinate axes 5 = f 1. 
As in 53.1, the numerical treatment begins with the transformation (3.10) of the 

radial variable. The transformed counterparts of (3.21 a, b )  contain fourth derivatives 
of Cm&, 5) = &,?(r, 5) and third derivatives of .Gmg(z, 5) = 2ims(rt 5) with respect to z. 
The boundary conditions satisfied by ii,, and B,, are then 

(3.23a, b )  

and zmc(  - 1 9 5 )  = 0, ( 3 . 2 3 ~ )  

at the surface of the sphere. Here (3.23a,c) follow directly from (3.22a, b ) ,  whereas 
(3.23 b)  is a direct consequence of the continuity equation, 

The z- and 5-components of the velocity are then required to satisfy two far-field 
boundary conditions a t  z = 1 .  As in the calculation of the base flow and the 
investigation of axisymmetric disturbances, there is a degree of choice available in 
the selection of these far-field conditions. We have chosen to require that each of the 
disturbance velocity components satisfy a ‘hard ’ and a ‘soft’ boundary condition at 
z = 1 .  These are 

iirnz(1,C) = 0, iimc(1,5) = 0, (3.23d, e )  

and 

where the hard conditions (3.23d,e) ensure that the disturbance inflow is 
axisymmetric on the outer boundary of the computational domain. 

We now consider solution of an eigenvalue problem consisting of the partial 
differential equations (3.21 a ,  b )  and the boundary and kinematic conditions (3.22), 
(3.23). This time, we expand the disturbance quantities directly in terms of a 
complete set of functions. (A similar procedure had earlier been attempted for the 
base-flow calculation, but was abandoned owing to slow convergence of the Newton 
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FIGURE 1.  Distribution of the temporal eigenvalues for m = 1 and Re = 175, with I = J = 14. 
rm = 148.4. (a) All of the temporal eigenvalues. (b) Detail showing the least stable eigenvalues. 

iteration used to solve the nonlinear algebraic equation system.) The expansion for 
m = l  

GJZ, 5)  = I; %(<) I; B, e-fa(z+l)(zg - 1 )v, (3.24 a)  

Glg(z, 5) = C pa([) C Ei,e-ia(z+') (2 - 1 )  ( z -  1) z j ,  (3.24 b )  

differs from the general case on account of the kinematic condition (3.22e). We 
denote by R,(z, 5) and @,(z, {) the residuals that result when the expansions (3.24a, 
b )  are substituted into the differential equations (3.21 a)  and (3.21 b ) ,  respectively. We 
then make these residuals orthogonal to the trial functions according to 

I J 

i-1 j = O  

I J 

1-0 j=o 

@ , ( ~ , ~ ) ~ ( ~ ) ( ~ ~ - l ) ( ~ - l ) ~ ~ d ~ d ~ ~ O  (0 < i <I, 0 < j  < J ) .  (3.25b) L sf, 
These linear equations constitute a matrix eigenvalue problem of the form (3.16), 
where C is again non-singular. In  t'he non-axisymmetric case, the order of the 
eigenvalue problem is ( J +  1 )  (2I+ 1 ) .  Again, the eigenproblem is solved using 
standard EISPACK software. No spurious eigenvalues were found. For Re near Re,, 
computation of the base flow (with K = L = 28) requires four Newton iterations, 
amounting to about 16 min of CRAY X-MP/48 time. Determination of the stability 
of the base flow (with I = J = 14) requires an additional 20 min on the same machine. 

Table 2 shows, for m = 1 and 160 <Re < 190, the temporal eigenvalue B having 
the largest real part, for roa = 148.4 and (I, J )  = (12,12), (14,14), (16, 16) and (14, 16). 
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I1 x x x x x x  

I I I + + +  
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I = J  K = L = 2 8  K = 28, I, = 34 h- = 40. I, = 28 
12 -3.041 x 10-fif0.3113 i -3.050 x 10-fi+0.3110 i -3.048 x 10-6k0.3114 i 
14 -2.261 x 10-7f0.3001 i -2.972 x 10-'+0.3005 i -2.756 x 10-7f0.3002 i 
16 - 1 . 0 5 2 ~  10-fif0.3004 i -1 .143~10-~+0.300Oi - 1.095 x 10-6+0.3003 i 

TABLE 3. Least stable eigenvalue for m = 1 ,  Re = 175 with rr = 148.4. 

Re 
160 - 8 . 1 1 6 ~  10-4f0.0i 
170 -7.907 x 10-4f0.0 i 
180 -7.687 x 10-4+0.0 i 

TABLE 4. Least stable temporal eigerivalue for nz = 2 with r ,  = 148.4, I = J = 14 
190 -7.439 x 10-4 &o.o i 

(We have considered I = J and I + J in order to examine the possible dependence of 
Re, and the disturbance eigenfunction on the truncation scheme employed (Steen & 
Aidun 1988).) As in the m = 0 case, calculations using r,  = 90.0 gave least stable 
(most unstable) temporal eigenvalues differing only modestly from the results for 
r m  = 148.4 at Re = 130 and 190 (6.5 and 9.5%, respectively). 

The results indicate that disturbances with azimuthal wavenumber m = 1 become 
unstable at, Re % 175.1. The imaginary part of the neutral eigenvalue is fz % 0.300, 
corresponding to a Hopf bifurcation, and indicates that  the onset of instability 
occurs via oscillatory disturbances. If the frequency is non-dimensionalized in the 
same way as a Strouhal number (based on sphere diameter), we obtain St, = fz/n = 
0.0955. The computed values of Re, and St, are in excellent agreement with 
experiment, as discussed in $4. 

Figure 1 shows the distribution of the temporal eigenvalues at Re = 175 with Z = 
J = 14 and r m  = 148.4. From figure 1 (a), we note that the eigenvalues are clustered 
along a curve which passes near to the origin of the g-plane. Figure l ( 6 )  shows that 
although a pair of eigenvalues with I m ( r )  = 0.300 is the least stable a t  Re = 175, 
there are many other eigenvalues having real parts which are only slightly negative. 

Table 3 shows that the number of trial functions employed in the base-flow 
calculation (K = L = 28) is sufficient. 

For m > 1,  the linear-disturbance equations are still (3.2ia,b) and (3.22c), (3.23), 
with (3.22d) replaced by (3.22e). We employ the expansions 

I J 
GmZ(z,  6) = W,(<) C FZi e-a(z+1)(z2 - 29, 

i= l  j = O  

I J 

i-1 3'0 

C,,(z,<) = C W,(<) C Xije-a'z+1'(z2-1)(~-l)zj. 

As before, these expressions are substituted into (3.21a,b), and the residuals are 
made orthogonal to the trial functions. The resulting set of 2I(J+ 1) homogeneous 
linear algebraic equations again constitutes an eigenvalue problem of the i'orm (3.16), 
which is solved as before. 

The results shown in table 4 clearly indicate that the flow is stable for disturbances 
with m = 2 for Re < Re,. Table 5 suggests that  the flow becomes increasingly stable 
with respect to disturbances having larger azimuthal wavenumbers, at least near Re,. 
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m 

2 - 7 . 7 7 5 ~  l O - * + O . O i  
3 - 1 . 1 9 3 ~ 1 0 - ~ + 2 . 3 4 8 ~  10-2i 
4 - 1 . 2 8 5 ~ 1 0 - ~ + 2 . 3 7 7 x l O - ~ i  
5 - 1 . 3 0 2 ~  10-s+2.375x i 

TABLE 5. Least stable temporal eigenvalue for Re = 175, with rw = 148.4, I = J = 14. 

Finally, we remark on the interpretation of our analysis. For either axisymmetric 
or non-axisymmetric disturbances, the problem reduces to one of deciding whether 
the spectra of certain linear partial differential operators lie entirely in the left half- 
plane. We have approximated the linear operators by finite-dimensional matrices, 
the eigenvalues of which are taken to approximate those of the corresponding 
differential operators. This approach leaves in some doubt the status of the 
continuous spectrum of the original operator. Although we cannot prove that the 
continuous spectra (if in fact they exist) lie entirely in the left half-plane for all 
combinations of Re and m investigated, there is every reason (based on the 
reasonable agreement with experiment and the distribution of eigenvalues shown in 
figure 1) to believe that the present results are in fact not corrupted by the 
discretization. 

3.3. Structure of the m = 1 eigenfunction 
In order to better understand the three-dimensional character of the non- 
axisymmetric disturbance that becomes unstable a t  Re,, we have examined an 
approximation to the oscillating wake. In  particular, we have considered a composite 
flow consisting of the axisymmetric base flow to which is added some multiple of the 
eigenfunction of the linear stability problem, i.e. 

with the amount of the linear eigenfunction added to the base flow chosen so that the 
maximum speed of the disturbance flow (lull) is 0.0174, where the characteristic 
velocity of the base flow is unity, corresponding to the uniform flow. Although (3.26) 
is no longer a numerical solution of the full Navier-Stokes equations, it should give 
a good qualitative picture of the actual flow just above Re, if instability sets in via 
oscillations of small amplitude (infinitesimal amplitude a t  the bifurcation point). 

For this composite flow, we have selected Re = 175.1, and computed the pathline 
for a fluid particle having an initial position r = 1.2 and 8 = 30". This point lies 
within the recirculating flow region for the base flow with Re = 175.1. Figure 2 shows 
two perspective views of the pathlines at a sequence of dimensionless times. We 
observe that the pathline resembles a trajectory on a torus having a highly non- 
circular, slightly #-dependent cross-section. In fact, the perimeter of the cross- 
section of the torus closely approximates a pathline (in a constant $-plane) of the 
steady axisymmetric base flow. The helical nature of the disturbance is clearly 
evident. At larger Re (corresponding to  a larger azimuthal velocity component), the 
pathlines will be less tightly wound. For either the composite flow (3.26) or a time- 
periodic solution of the nonlinear equations (2.1)-(2.3), we can easily show that the 
particle trajectories will not be temporally periodic unless Re is chosen so that the 
pathline winds around the toroidal cross-section an int,egral number of times during 
a 2rc change in #. 

The m = 1 eigenfunction can also be characterized in terms of the disturbance 
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vorticity field. Figures 3 (a)-(c) show the r- and &dependence of the azimuthal, polar 
and radial components of the disturbance vorticity, with the real and imaginary 
parts in the upper and lower halves, respectively, of each figure. We note that the 
disturbance is strongest near the equator of the sphere, upstream of the separation 
point, which is located at 8 = 63.4' for Re = 175. In each of the six cases (real and 
imaginary parts of the three vorticity components), inspection of the entire field out 
to r = 148.4 revealed no other vorticity contours with level equal to or exceeding the 
contours shown. It is thus clear that although the disturbance manifests itself as a 
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FIGURE 2. Views of the pathline of a particle beginning a t  t = 0, r = 1.2,B = 30°, 4 = 0". The views 
on the right are from a point two sphere radii downstream of the sphere centre (located a t  the 
intersection of the two axes shown), 100 sphere radii from a plane passing through the sphere 
centre, and inclined 270" with respect to the sin 4 = 0 plane in which the particle's initial condition 
lies. The views on the left are from a point 100 sphere radii upstream of the sphere centre (again 
at the intersection of the axes shown), located on the base flow's symmetry axis. The pathline is 
shown at t = 30, 60, 120, 240, 480, 960, 1920, 3084. 
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FIGURE 3. r - 8  dependence of the real and imaginary parts of the three vorticity components. 
(a) wp; (b) w,; (e) w,. The upper and lower halves of each figure depict the real and imaginary 
parts, respectively, of the appropriate vorticity component. 

helical motion in the wake, its origin is in the instability of the boundary-layer flow 
on the sphere. 

4. Comparison to experiment 
In this section, we compare our computational results to  a number of previous 

experiments. As discussed below, the experimental determination of Re, is 
complicated by the fact that the wake oscillations have a very low frequency. In view 
of this problem, we believe that the comparisons presented here are very good. 

Moller (1938) towed spheres equipped with dye ports vertically through water in 
tanks of square cross-section. He found that the flow was steady below Re = 170, and 
that a t  Re = 200, the wake oscillated with a very low frequency. The ratio of tank 
width to sphere diameter was 8 a t  Re = 170 and 20 at Re = 200. In  view of the rather 
large blockage factor, we consider the agreement between Moller’s experiment and 
our calculation to be very good. 

Taneda (1956) reported that when a ‘Reynolds number of about 130 is reached, 
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however, the faint periodic pulsatile motion with a very long period occurs a t  the rear 
of the vortex-ring’. Taneda gave a possible explanation for his observation of 
unsteadiness at  an Re below our computed Re, when he noted ‘that a slight 
asymmetry of the flow pattern was caused by the presence of the support; namely 
the separation point just behind the support was moved slight>ly forward’. The fact 
that the spheres were suspended by a single vertical support (with the base flow being 
primarily in the horizontal direction) means that, perforce, the distorted base flow 
had a substantial m = 1 component, which is the azimuthal mode to which the 
axisymmetric flow is most unstable. Moreover, as shown in figure ~(u-c) ,  the 
disturbance eigenfunction is concentrated at the equator, where Taneda’s spheres 
were supported. I n  addition, Taneda’s use of thin piano wires (with diameters of 
0.3 mm and 0.5 mm and aspect ratios of 50 and 30, respectively) to support much 
larger spheres (diameters between 9.52 mm and 19.82 mm) may allow considerable 
coupling between disturbances in the flow and the rigid body motion of the spheres. 
It seems likely that Re, for a fixed (i.e. rigidly supported) sphere will be greater than 
or equal to the Re, for a sphere which is allowed to respond to flow disturbances, 
because the disturbances to which the latter sphere are subject are less constrained 
than those to which the former are subject.) Thus, the lack of rigidity of the support 
may also contribute to  Taneda’s observation of instability at a lower Re than 
predicted by us. 

Goldburg & Florsheim (1966) observed that the wake behind a falling sphere lost 
its axisymmetry a t  Re x 210, although they did not detect the loss of steadiness until 
Re = 270. We consider our results to be in good agreement with these, given the low- 
frequency nature of the instability, which makes the discernment of unsteadiness 
difficult. 

Toulcova & Podzimek (1968) dropped aluminium alloy spheres through various 
solutions of glycerol and water, and reported that the transition to unsteadiness 
occurred a t  Re = 130. In  a later study with the same spheres, Zikmundova (1970) 
reported a transition to unsteadiness in the range 130 <Re < 150. Since Re, for 
falling spheres should approach the fixed-sphere value when the spherelfluid density 
ratio (p = p,/p,) in the freely falling case approaches infinity, we might expect our 
computed Re, to be significantly higher than that found in these experiments, for 
which /? = 2.18. (Although neither the composition nor the density of the solutions 
was given, subsequent enquiry (J. Goodman, private communication, 1984) revealed 
that in all cases, the glycerol mass fraction was in excess of 0.99, allowing the density 
ratio to be accurately determined.) 

Roos & Willmarth (1971) found that for a sphere towed through water and 
supported by a sting in the rear, a side force first became apparent a t  Re x 290, 
corresponding to a non-axisymmetric force exerted on the sphere by the flow. They 
also found that if a weighted sphere was supported by two fine threads, the onset of 
the side force occurred a t  Re x 215. Roos (1968) concluded that the presence of a 
sting in the near wake had the effect of ‘tying down the tail of the wake bubble 
through the no-slip condition a t  the sting surface’, and that this prevented 
oscillation of the wake under conditions where it would have otherwise been unstable 
(i.e. for 215 d Re d 290). We think that our computed value ofRe, = 175.1 is in gcod 
agreement with the value (Re x 215) of Roos & Willmarth (1971). 

Nakamura (1976) observed the trajectories of falling spheres to be vertical for 
Re < 190, with meandering a t  higher Re. Since it can be shown that the trajectory 
of a freely falling sphere subject to  disturbances containing an m = 1 azimuthal 
component cannot be vertical, the onset of meandering corresponds to the onset of 
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Authors Liquid 
Moiler Water 

Water 
Taneda Water 

Water 
Nakamura Water 
Goldburg & 30 % glycerol 
Florsheim 70% water 

Distance 
travelled 

120 
120 
100 
100 
100 

120 

(em) 
urn 

(cm/s) 
0.286 
0.278 
0.86 
1.13 
1.373 

10.0 

Sphere 
radius 
(cm) 
2.975 
3.050 
0.991 
0.754 
0.619 

0.286 

Computed 

Towed 0.004 72 
Towed 0.00449 
Towed 0.0425 
Towed 0.0735 
Falling 0.109 

Falling 1.29 

Remarks f (Hz) 

TABLE 6. Wake oscillation frequencies for previous experimental work, computed using 
equation (3.25), for Re = 175.1. 

an m = 1 instability. Thus, we consider our results to be in excellent agreement with 
Nakamura’s flow-visualization experiments. 

As for the frequency of the wake oscillations near the onset of instability, there is 
relatively little quantitative data with which our results can be compared. Probably 
the best data at low Re (below the onset of vortex shedding) is that of Roos (1968), 
who towed a sphere supported by a side-sting in a 9.6 m long tank, and found St, x 
0.087. (This is an average of measurements a t  the six lowest Re, in the range 250 < 
Re < 450, with all values lying between 0.084 and 0.095.) We consider this to be in 
excellent agreement with our computed value St, = 0.0955. 

In connection with the observations of Moller (1938) and Taneda (1956) regarding 
the low-frequency nature of the wake oscillations, it is of interest to note that the 

dimensional frequency &Re 
f=,,:, 

corresponding to 52 = 0.300 is very low in most of the previous experimental work in 
which Re, was estimated. Table 6 shows the sphere radii, fluids and dimensional 
frequencies (calculated according to (4.1) with Re = 175.1) for previous experiments. 
The low frequencies undoubtedly contribute to the difficulty in observing the wake 
oscillations, especially a t  or near Re,. (The experimental work of Stringham et al. 
(1969) is not included in table 3 because their measured viscosity data for aqueous 
glycerol solutions are in serious disagreement with accepted sources (Segur & 
Oberstar 1951). We cannot correct for this by interpolating from the data of Segur 
& Oberstar because it is not known whether the discrepancy is due to poor 
viscometry or the absorption of atmospheric water by the extremely hygroscopic 
glycerol. We have also not included the data of Toulcova & Podzimek (1968) because 
of uncertainty about the degree to which the velocity of the falling sphere had 
approached its terminal value.) 

5. Discussion 
The present work provides the first accurate calculation of the critical Reynolds 

number at which the non-parallel flow past a body of revolution becomes unstable. 
Our results for a sphere are in good agreement with previous experimental work, for 
both Re, as well as the frequency of the wake oscillations. The predicted instability 
mode (m = 1) is the same as that observed experimentally a t  higher Re. 

Our results are also in good agreement with the theoretical prediction by 
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Monkewitz (1988 b )  of local absolute instability for a class of parallel axisymmetric 
wake profiles. His results are for the m = 1 azimuthal mode and are parameterized 
by a centreline reversed flow parameter ( A )  and a shape parameter. In view of the 
fact that both the degree of reversed flow on the centreline, as well as the wake shape, 
depend on downstream distance (owing to the non-parallel nature of the flow), we 
have not attempted a direct comparison of our results for the sphere to  Monkewitz's 
theory. However, we do note that our computed value Re, = 175.1, lies in the range 
(lo2 < R e  < lo3) in which Monkewitz has predicted the occurrence of local absolute 
instability for two values of A .  

Since our analysis is a linear one that finds the smallest Re at which infinitesimally 
small disturbances will grow, the possibility remains that disturbances of finite 
amplitude might lead to the onset of subcritical instability at smaller Re. That the 
onset of instability in the steady axisymmetric base flow probably occurs by a linear 
mechanism is suggested by the agreement with experiment. First, the computed 
value of Re, and the associated Strouhal number are in good agreement with previous 
experimental values. (In those cases where the agreement between computed and 
experimental values of Re, leaves something to be desired, differences between 
experiment and the ideal situation considered in our analysis are consistent with the 
magnitudes and signs of the discrepancies.) Moreover, the predicted azimuthal 
wavenumber (m = 1) is the same as that observed in experiments a t  higher Re. 

Finally, we note that it would be interesting to determine whether the Hopf 
bifurcation which seems to lead to unsteady helical vortex shedding is a supercritical 
one, as appears to be the case for transition from a steady separated wake to the 
Ktirmin vortex street in two-dimensional flow past a circular cylinder. This question 
could be investigated by a weakly nonlinear analysis, or by introducing disturbances 
into a three-dimensional time-dependent numerical simulation. 

The authors thank Professor P.  A. Monkewitz for useful comments. They are 
grateful to the National Science Foundation for support of this work under NSF 
Grant MSM-8451157, and to the NSF San Diego Supercomputer Center, where much 
of the computing was done. 

Appendix 
We can integrate ( 3 . 1 3 ~ )  to get 

where Qi3) = QP) = 4QP) = 24Qp) = a,, Q!') = QZ = 4Qi0) = a2, Q;') = a3, Q1 ( 0 )  - - a4, 
Qio) = a,-+,, all other values of Q:) are zero, the coefficientsf$) are given by Zebib 
(1984), and the a, are determined from the boundary conditions. We can then rewrite 
(A 1 )  as (3.14), where 

QZ) = f 2' - $)&qo, 

4 FLM 211 
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where 6 is the Kronecker delta, and 
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J+4-p J t l - P  

4=0 g-0 

vy) = C f‘”, 43 yjp) = C (-1)Qfg) 
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